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Implementation of geostatistical methods into natural resource management studie.s marked 
the end of the I980s and the beginning of the 1990s. Areas of application inciuded soil 
.science, entomology, ecology, forestry, and geography, among others. In particular, ordinary 
kriging has seen widespread use in recent years. Its use can be expected to inerease as 
understanding of the pnxtedure and availability of geostatistical software inereases. One 
objective for this páper is to introduce kriging to a new audience. During this period there has 
also been a dramatic inerease in Geographic Information Systems (GIS) both in terms of 
capabilities and the breadth of applications. Many GIS applications make use of digital 
elevation models (DEMs), most of which háve been generated from elevation point data using 
deterministic models. We present results of research into the use geostatistical methods to 
develop and test a st(x;hastic (probabalistic) DEM. Both GIS and spatial statistical software 
were used during the prtxiess of generating and analyzing the data and displaying the resulting 
DEM. The use of stochastic methods was motivated by the observation that many 
earth-related attributes are generated by stochastic processes. Kriging was the spatial 
statistical tool selected for model development. Results corraborated the hypothesis that 
kriging can produce highly aceurate DEMs. The density and distribution of sample locations 
determines the absolute accuracy.
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1 INTRODUCTION
The term "digital elevation model" (DEM) refers to the numerical representation 

of the earth’s surface. inereasing implementation of computerized technology in the
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natural resource and geo-sciences is accompanied by growing interest in three di- 
mensional surface modeling. DEMs are being applied in a wide variety of projects 
such as soil erosion calculations, hydrologie modehng, vegetation mapping, landuse 
development, planning, architecture etc. Geographic Information Systems (GIS) wi- 
dely support terrain representations and provide Creative environments for further 
applications and extensions.

DEMs can be generated from a variety of sources. Giles et al. (1994) derived 
DEMs from satellite imagery using multispectral stereoseopy, while Cooper et al. 
(1987) used simulated satellite data to generate their DEMs. Recently, DEMs are 
increasingly generated by direct measurements from digital aerial photographs. Ho
wever, DEMs can also be developed entirely by spatial interpolation of point data or 
contour lines, including second- or higher-order polynomials. Examples can be found 
in Miller La Flamme (1958), Birkhoff and Mansfield (1974), and Nelson and Jones 
(1995). In contrast to these deterministic interpolation models, a variety of spatial 
statistical tools, such as kriging, can be utilized to develop interpolation models. The 
purpose of this article is to introduce kriging and to develop the statistical model and 
resulting estimation procedures for ordinary kriging. A kiiging-based DEM for an 
area located in western Texas, USA, is developed as an example. Kriging procedures, 
however, can be applied to a wide variety of spatial data in the natural resource and 
geo-sciences that can be assumed to háve been generated by random processes.

2 THE KRIGING MODEL
Kriging is based on probabilistic principles. The decision to use kriging instead of 

other interpolation methods for developing our DEM was supported by the fact that 
kriging is a "best linear" spatial interpolation procedúre. It is "best" in the sense that, 
given the model assumptions, it is unbiased and it has the smallest mean squared 
prediction error. That is, the smallest prediction variance. It is linear in the sense that 
the predicted value at any location within the study domain is taken to be a linear 
combination of data values actually observed at other locations within the domain. In 
particular, let Z{x) be a random variable taking on values, z(x), at locations x in the 
area (domain. D) of study. At any particular x, Z(x) is a random variable. In the 
literatúre, the set Z(x) = {Z(x): x g Ď} is called a )widom funcíioji.

In our study the Z(x) is the random process that generated elevation at x and the 
z(x) are elevation values. Kriging models are of the form

Z(x) = |a.(x) -H e(x), (1)

where p(x) is a mean funetion and e(x) is a random error process with E{z(x)) - 0. 
This implies that |r(x) = £'(Z(x)). Actually, there are a number of different kriging 
models. Most notable are simple kriging, in which |i(x) is assumed to be known, 
ordinary kriging, for which |i(x) is assumed to be an unknown constant: p(x) = p for 
all x in the domain, universal kriging, where p (x) is assumed to be an unknown 
funetion to be estimated, much like a regression model, and nonlinear kriging, in 
which čase the mean funetion is a nonlinear funetion of the data. Because ordinary 
kriging is, by far, the most commonly used kriging technique, and because an under
standing of the various types of kriging are derived from an understanding of ordina
ry kriging, only ordinary kriging will be considered herein.

The ordinary kriging estimator for the elevation at any, sampled or unsampled, 
location X() in the domain is linear in the data. That is, it has the form:
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A ^—1
Z(^o) = 2j ^Oi zixi), 

1=1

(2)

where z(x,), i are known elevation data available for model develop
ment. This implies the random variable

Z(xo) = ^ W(), Z(xi). 
i=\

(3)

The wo, are called the kriging weights for location xo. They are truly weights in the
n

sense that wo, = 1. This is trne for all prediction locations, xo. The kriging weights
í=i

are unknown constants that must be estimated as a part of model constmction. The 
condition that weights must sum to one is actually imposed as a constraint in the 
development of the kriging estimator. It ensures unbiasedness.

Since^the weights and p are all constants (not stochastic), upon taking the expec- 
tation of Z(jcu) in equation (3) we see that

E(Z(xo)) = E ^ Wo, Z(Xi)

(=1

= Yj ^Oi E{Z{xi)) = Y Wo, ^(p + e(x,)) =
i=l i'=i

v ___ / __ ___ ___
= Y = dX ^'0- + ■

A
This indicates that, in order for Z{xu) to be unbiased for p, we must háve the 

constraint that the kriging weights for location xa sum to one.
As noted earlier, the kriging estimator is "best" in the sense that it is unbiased and 

that it minimizcs the mean squared prediction error for models having the form of the 
of equation (1) and estimators of the fomi of (2). The mean squared prediction error, 
also called the kriging variance or the prediction variance, for location xo is given byA ^
E(Z(xo) - Z(X())) . We want to minimize this quantity subject to the constraint that
n

Y^Oi = 1. This can be accomplished by introducing the Lagrangian multiplier, X, and 
1=1
setting to zero the derivatives of the Lagrangian funetion.

L(woi,X:i = 1,2,= E(Z(xo) - Z(xq))'^ + 2X 

In Appendix 1 we show that

Y ^
(=1

(4)
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L{woi,X'.i — 1,2,...,n) — ^ ^vľOjOíí + 2woi^Woj Oý j— 2^14^0,00, + Ooo + 2X 

í=l y>i i=l
where:

-1
!=1

o,y = Cov(Z(j:,),Z(xy)),
Oo, = Cov(Z(xo),Z(jc/)), and
au = Cov(Z(x/) Z(x,)) = Vflr(Z(x,)),

for í,7 = 0, 1,
From introductory calculus, we know that setting the derivatives of L, with res- 

pect to the n+\ parameters, X, wo,, i = equal to zero minimizes L and,
consequently, minimizes the mean squared prediction error subject to the consU'aint 
that the weights sum to one.

Since there are n+1 parameters, there are n+ \ derivatives; the first of which is

^ = 2 
d\ -1

i=l

The remaining n equations také the form
n

dl
dwo.

= 2'^Wojaij - 2oo, + 2X, i = l,2,...n.
y=l

Setting all n+l derivatives equal to zero results in = 1, our constraint, and
i-i

+X = Oo„ 1=1,2,..., n. 

;=i

Writing these n+l equations out in all their glory we obtain:

OiiWoi + 012 W02 + ... + a[„WQ„ + X = Ooi
O21 Woi + <722+"02 + . . . + C72n Won + ^ = Oo2

OíliWoi + 0/12^02 + . . . + annWOn + ^ = Oon 

Wol + W02 + . . . + WOn = 1

(5)

which can be simply expressed in the matrix form: Cwo = čo. The dots indicate 
partitioned matrices. The "sub-0" subscript is a reminder that the kriging equations 
are for the prediction at a particular location, xo. Components of those matrices are
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Oll 012 . . 0i„ 001 woi 'l ■

c = 021 022 • • 0„2 , Co = 002
, Wo = W02 , and j = 1

^ 1 rt ^n2 • • ^nn won 1

The partitioned matrices are

C = C j
0

Wo ^
Wo and Co =

The weights and the Lagrangian multiplier are determined by w = C ’čo. Expres- 
sions for the kriging (prediction) variance are provided in Appendix 3.

3 FUNCTIONS OF DISTANCE AND THEIR IMPLEMENTATION IN 
THE KRIGING SYSTEM

There are two problems with the systém (5) of equations which extend to the 
corresponding matrix representation. First, it involves unknown population covarian- 
ces that must be estimated before the systém can be solved. Secondly, it involves as 
many as n{n + l)/2 distinct covariances in C, plus another n covariances in co. It 
would be impossible to estimate all {r? + 3«)/2 of these covariances from our n data 
points without some simplifying assumptions. The most fundamental of these assum
ptions is that the covariance of elevation between points is a funetion of only the 
distance between those points. Elevations, or other attributes, at locations relatively 
close to each other will tend to be similar and those of locations distant from one 
another will tend to be more different. The further the distance apart, the more 
dissimilar the data will tend to be. That is, correlation between data values tends to 
deerease with distance. Like correlation, covariance deereases with inereasing distan
ce. By modeling the covariance sUucture as a funetion of distance between points, 
and knowing the distance between all locations xí, xj, and xo, in (5), we will be able 
to estimate the covariances needed to solve for the kriging weights.

Covariance, expressed as a funetion of distance, is called both the covariance 
funetion and the covariograin. Specifically, if h is the horizontál distance between 
two points separated by a vector h, then Č(h) = C(II/íII) = Cov(Z(x), Z(x + h)). In the 
čase of the covariances in systém (5):

OiV = Cov(Z(x,)), Z(x,)) = C(0) = o^,

Oy = Cov(Zix;)), Z{xj)) = C(ll xi - Xj II), and

Oo, = Cov(Z(X())), Z(x,)) = C(ll Xo - Xi II).
It tums out that, rather than modeling the covariogram directly, applied resear

chers often prefer to model a dosely related funetion, the semivariogram, 
y(h) - C(0) - C(h). The variogram, itself, is defined as 2yih). It is easy to show that, 
for locations x, and xj, 2y(IIx, - XylI) = E(Z(xi) - Z(xj)Ý.
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(Some authors, e.g. Pannatier 1996, call y(^) the variogram). Estimated variogram 
functions tend to be better behaved than estimated covariogram functions (Cressie 
1994). If C(0) exists, it is a constant and, since C{h) is a decreasing funetion of h, it is 
clear that Y(/t) is an inereasing funetion of distanee. This simple relationship between 
the covariance funetion and the variogram indicates that, when C(0) exists, the kxi- 
ging weights can be equally well expressed by estimated covariance or variogram 
values. Indeed, rather than expressing the systém (5) of equations and the resulting 
matrix equation in terms of covariances, many authors choose to express it in terms 
of variogram values. The correspondence is presented in Appendix 2. Because the 
covariogram and the associated variogram are assumed to be functions only of dis
tance, they are sometimes (e.g., Isaaks and Srivastava 1989) referred to as models of 
spatial continuity.

Reference was made in the preceding paragraph to the existence of C(0). Two 
fundamental model assumptions are that E(L{x)) - p for all x in the domain of study 
and that the E{Z{x)-Z{x+h)Ý = 2y(II/iII) is a funetion only of the distance between the 
points. Together, these two assumptions constitute the assumption that Z{x) is intrin- 
sically stationary. If, in addition, tíie covariance between points is a funetion only of 
the distance between the points, ie. that Cov(Z(jc), Z{x+h)) = C(IIäII) for all points in 
the domain, the process is said to be second-order stationary. Second-order stationa- 
rity implies the existence of C(0). The assumpUon of second-order stationarity is 
stronger than the intrinsic assumption and allows a wider class of inferences. For 
models that are intrinsically, but not second-order, stationary, the variogram exists 
but C(0) does not. As a result, the variogram can be modeled but not the covario
gram. TTiis is one of the reasons that many applied researchers prefer to work with 
tíie variogram rather than the covariogram for modeling spatial continuity.

3.1 MODELING SPATIAL CONTINUITY 
The idea behind modeling the variogram is quite simple:

Step 1. Choose a sequence of distances, say h], h2,..., hm- The difference, 
hk+i - hk, between successive values is often constant and called the 
lag-distance.

Step 2. For each chosen distance, hk, select from the set {xr. i = l,2,...,n}, those 
points that are separated, or approximately separated, by hk. EsUmate 
the variogram value, 2y(hk), between those points. If N(hk) is the num
ber of distinct pairs of locations that are separated by hk the usual
estimator is 2y{hk) = X (dxi) - zixjif / N{hk).

N{hk)
Step 3. Fit a smooth funetion, 2y{h), to the computed 2y(hk)s, k - l,2,...,m.
Step 4. Estimate y( II xi - xj II ) and ( II xo - xi II ), i and j ranging from 1 to n, 

required to find the kriging weights. These values are substituted into r 
and Yo in Appendix 2 in order to solve the kriging equations.

The algorithm, as stated above, is a bit of a simplification. First, it is often the 
čase that the (co)variogram stmeture is not the same in all directions. In the čase of 
elevation, it is reasonable to expect that, if we háve a mountain range oriented along 
an axis, then the correlation (covariance) between pairs of points in the direction of 
that axis may be different than the correlation between point pairs perpendicular to
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the axis. If variograms fitted in two directions are the same, they are said to be 
isotropic to one another. If variograms fitted in all directions are the same, the 
variogram is said to be omnidirectional or universal. Conversely, if variograms fitted 
from data oriented in two directions are different, they are anisotropic to one another. 
If anisotropy is present, then Step 2 of the algorithm must be modified to first select a 
direction for computing the variogram, and to only select pairs of points that are 
separated by hj, in that direction. The resulting variogram is called a directional 
variogram. Omnidirectional variograms are ideál because all of the available data, 
not just pairs of data oriented along a given axis, can be used to estimate variogram 
values, yihj)', giving rise to more stable estimates. Also, if anisotropy is present, then 
variograms in at least two directions must be fitted and then combined to give the 
finál variogram estimator; y(ä) =/(Yi(IIäiII),Y2(IIÄ2II),...), where fis some combining 
funetion. Si|ich combining of variograms is beyond the scope of this páper. A follow- 
up páper will consider the question of anisotropy in some detail. We simply note that 
it is important to always compute and to graphically compare directional variograms 
in order to assess whether the omnidirectional variogram is justified.

Variograms can be constmeted from regularly or irregularly spaced data. If data 
are irregularly spaced, as were our elevation data, it is unlikely that any two locations 
will be exactly separated by the distances chosen in Step 1. As a result, distance 
tolerances are specified and those points separated by h ± tolerance are selected in 
Step 2. For directional variograms, tolerances on the direction of separation are also 
imposed.

As for Step 3, there are potentially a very large number of functional forms 
suitable for modeling the variogram. Most spatial modelers restrict their attention to 
a small number of models that háve proven quite useful and flexible in most situa- 
tions. Many variograms are well-íitted by the spherical model. This model is good 
for defining some of the terms related to variogram modeling. The spherical model is 
specified as:

ls{h) =
0, h = 0,
Co + c(ih/a - (h/aÝ)/ 2, 0 < h < a
C() + c h> a

(6)

A generic spherical variogram is shown in Figuře la. There is a discontinuity in 
this funetion. It is equal to zero at /i=0, but it approaches co as h approaches zero 
from the right. The diserepaney, co = 20, is called the nugget effect. It is usually 
attributed to measurement error; specifically to the fact that we can only measure 
elevation at distances fmitely close to any given location. The other discontinuity is 
at /i = a = 35; a is called the range. Beyond the range, the variogram is constant at a 
value of co + c = 100. This value is called the sill.

An exponential variogram is shown in Figuře Ib. Exponential models také the 
form

lÁh) = 0, h = Q,
Co + c(l - exp(-/i/a)), 0 < h < a. (7)

The nugget effect is again represented by co and, as /z ytih) approaches the 
sill of Co + c. However, since ya(/i) never actually reaches the sill, the concept of a
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range is more vague. The practical range is taken as h = ?>a. This is the distance at 
which the variogram reaches approximately 95% of its sill.

The spherical and exponential models both háve sills. Models of this type are 
sometimes called transition models. Figuře Ic shows three different power variogram 
models. A power model is of the form:

yr(h) = s
Co + c.h

h = 0, 
Q<a< 2. (8)

These variograms inerease without bound as h inereases. That is, they do not háve 
sills. It tums out that variograms of second-order stationary random functions, Z(jc), 
háve sills while those of only intrinsically stationary random functions do not.

Figuře Id depicts a fourth variogram model, the Gaussian model, that is someti
mes used. The Gaussian model takés the form:
ycih) = C() -I- c(l-exp(-/!Va^); Yc(0) = 0. It has a practical range of adJ. It tums out 
that valid variogram models must induce positive defmiíe variogram matrices (ŕ in
Appendix 2). This ensures that ŕ “'in (A2.4) will exit. Models that are guaranteed to 
produce positive definite matrices, regardless of the separation distance, are themsel- 
ves said to be positive definite. While it is possible to specify any functional form for 
a variogram and then test for positive defmiteness (eg., Cressie 1991, section 2.5.2), 
the spherical, exponential, power, and Gaussian models are known to be positive 
definite and háve been found to be flexible enough to cover most modeling situa- 
tions.

Fig. 1. Four positive definite variogram models. All models háve a nugget effect of 20. The spheri
cal, exponential, and Gaussian models each háve a range of 35 and a sill of 100. Three power 

models, corresponding to a = 0.5, a = 1, and a = 2 are shown in panel c.
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A variety of techniques are available to actually fit the covariogram model, y(/2), 
to the estimated covariogram values {y{hj)\, j = Pannatier (1996) imple-
ments a trial-and-error approach in the program VARIOWIN, whereby the user 
chooses from one of the three model forms specified above and then tweaks the 
model parameters, co, c, and a, until a good fit is achieved. His technique is largely 
visual, although a "goodness-of-fit" value is computed. Altematively, regression or 
likelihood-based techniques can be used. In the čase of regression, since the covario
gram models are nonlinear in their parameters, nonlinear regression is indicated. 
Also, since some of the N(hk) are likely to be quite different than others, weighted 
regressions are often preferred over unweighted regressions. The visual, trial-and-er- 
ror approach is quite effective, but the regression approach guarantees repeatability.

Finally, we note that rather than predicting the elevation (or other attribute), z(X()), 
using all n data points, often only a subset of points nearest the point, xo, in question 
is used. This is done partly for efficiency reasons and partly for practicality. Suppose 
there are n = 1000 data points available for kriging. Then both C and r are 
1000x1000 matrices. One of these matrices must be inverted in order to estimate the 
kriging weights. But the inversion of such large matrices is quite time consuming, 
even on the most powerful of today’s workstations. From a more practical point of 
view, points distant from xo will háve small to negligible kriging weights. They are 
assumed to be zero. Consequently, only those n’ points nearest xo are used to deter
mine the weights, necessitating the inversion of only an n' xn’ matrix. Different 
Computer programs implement different windowing systems around jío. Sometimes 
the window is of a user specified physical dimensions (rectangle or circle) centered 
on Xo; sometimes the user specifies n’, and sometimes a combination of these windo
wing techniques is employed. The range is sometimes useful in determining window 
dimensions.

4 DATA AND MODELING PROCEDURES
As was stated at the beginning of this páper, the objectives of this article where 

two-fold: to introduce the kriging procedúre to a new audience and to apply kriging 
to surface modeling. The data were n = 806 coordinate locations, .v,, within an area in 
western Texas, USA, and the elevations. z, at those points. Point locations were 
digitized from 7.5 minuté (1/24,000 scale) US. Geological Survey maps using a GIS. 
The primary study area consisted of the Piloncillo quadrangle (B5-28099). This 
particular quadrangle was selected with the help of a program that calculated parame
ters of relief diversity in a 60 mile wide zone which is adjacent to the Rio Grande 
River. The Piloncillo and adjacent quadrangles were selected as representative of 
areas having low relief diversity. Benchmarked elevations were read directly from 
the maps. The majority of the elevation data were not benchmarked but estimated 
from the contour lines. The Lambert projection was used for coordinate data and the 
elevation data are in feet (1 inch = 2.54 cm; 1 ft = 12 inches). Elevations within the 
clipped quads ranges from approximately 480 feet to about 855 leet. To avoid border 
effects within the primary study area a buffer around the Pilo quadrangle was estab- 
lished that was equal to 1/2 of the area covered by a 7.5 minuté quadrangle. This 
resulted in the 806 points total in the GIS database.

Table 1 exhibits the first seven data records. Each record consists of a point 
identification number (ID-Number), the Lambert easting, Laimbert northing, and ele
vation of the point, and an elevation category. The ID-numbers originated intemal to
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Ihe GIS database during digitization process. The ID-numbers and elevation catego- 
ries are inconsequential to the variogram modelling and subsequent kriging. The data 
were exlracted from the GIS database and transferred to Geostatistical Software 
Libraiy (Deutsch and Joumel 1992) for further analysis and processing.

Tab. 1. Example of raw data for digital elevation modeling

ID Number X-Coordinate Y-Coordinate Elevation (feet) Elevation category

1 1050107.875 662767.500 691 5
2 1050443.000 663189.812 691 5
3 1052474.250 663108.812 622 6
4 1053226.250 663276.812 624 6
5 1054871.500 663374.188 643 8

19 1054888.000 662187.188 707 6
20 1053893.500 661948.812 625 2

4.1 SELECTION OE A VARIOGRAM MODEL

Over one hundred variograms were generated in order to determine the "best" 
functional form, and to assess variogram specifications. For example, large lag-dis- 
tances increased the "jaggedness" of the overall variogram shape and smáli lag 
distances were ušed to study local changes in variogram shape. On the other hand, 
with very smáli lag distances, the number of data points ušed to calculate some 
variogram values is low and, as a result the variogram values were not reliable 
measures of spadal condnuity. The fmal variogram was generated with the lag dis
tance of 500 meters. This lag distance maintains the smooth overall shape of the 
variogram while preserving sufficient detail. The distance tolerance was half the 
lag-distance, or ±250 feet.

The purpose of analyzing directional variograms is to determine the presence of 
anisotropy. Eight direcdonal variograms were calculated in the following degrees 
north of east: 0, 30, 45, 60, 90, 120, 135 and 150 with directional tolerances of 15 
degrees. For example, the 30 degree directional variogram actually considered all 
points within 15 to 45 degrees from a point. Figuře 2a shows the 0 (East-West, 
squares) and 90 (North-South, triangles) degree directional variograms together with 
the omnidirectíonal variogram (circles). The other direcdonal variogramS took posi- 
dons between these two (NS vs. EW) extremes. While both the East-West and the 
North-South variograms are clearly transitional (háve sills), the East-West variogram 
appears to háve a lower sill, indicating a weak presence of anisotropy.

While the direcdonal variograms indicated a smáli amount of anisotropy, it was 
not significant enough to justify the building of a complex variogram model. Com- 
plex (nested) variogram models do not guarantee significant improvement in the 
accuracy of kriging interpoladon and consequently the resulting DEM. Indeed, for 
distances less than about 7000 meters, all of the directional variograms were very 
close to one another. Because maximum window size (end of last section) ušed for 
kriging was considerably smaller than 7000 meters, the principle of parsimony in 
variogram modeling prevailed and a universal variogram was assumed.

The shapes of the experimental (direcdonal and universal) variograms clearly 
indicated a transitional model that is quite linear for smaller distances, h. The dircc- 
donal variograms were calculated up to a distance of 15,000 meters. This is approxi- 
mately half of the total North-South distance in the clipped maps and over half the
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East-West total distance. Experimental variograms often become erratic at distances 
much greater than half the maximum distance between points on the map. At 15,000 
meters the universal variogram has not yet reached a sill. The Gaussian model has 
considerably more curvature at smáli distances than indicated by our experimental 
variograms and was dismissed.

Using the trial-and-error approach to variogram model fitting implemented in 
VARIOWIN (Pannatier 1996), a Spherical(0, 4932, 17000), Exponential(0, 7600, 
15000), and a Power(0, 0.947, 0.906) model were each fitted to the universal vario
gram. The numbers within parentheses are the fitted values of the co, c and a parame- 
ters in models (6) - (8). These models, fitted to the universal variogram, are shown in 
Figuře 2b. Figures 2c and 2d show the fitted models on the East-West and the 
North-South directional variograms. The universal variogram is very well fitted by 
both the spherical and the exponential models and is well fitted by the power model 
at distances less than about 10,000 meters. Likewise, the North-South variogram is 
well fitted by all three models at all distances and the East-West variogram is well 
fitted by the three models for distances less than 7,000 meters. Since all three models 
are essenúally the same for distances less than 7,000 meters and since the windowing 
technique ušed for kriging only considered locations less than 7,000 meters, all three 
fitted variogram models will produce nearly identical kriging interpolations. Therefo- 
re, from a practical point of view, it is inconsequential which variogram model is 
selected. From a theoretical point of view, the power model was dismissed since it 
does not reach a sill and all directional variograms appeared to be transitional. Recall 
that a transitional variogram indicates a second-order stationary process which is 
desired.

3.000

a) Experimental Variograms

5,000 10.000 15,000

d) North-South

10,000 16,000

Fig. 2. Experimental and fitted variograms. The symbols for the omnidirectional, East-West, and 
North-South experimental variograms are circles, squares, and triangles, respectively. Solid 

Unes = fitted spherical model, dotted Unes = fitted exponential model, and dashed Unes = fitted
power model.
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As fitted, the spherical model appears "better" than the exponential model in the 
sense that it reaches a sill equal to the variance of the random process (a^ = C(0) = 
Of4932). The exponential model approaches a sill of 7,600. Since y{h) = C(0)- C(/i), 
a sill greater than C(0) indicates that the covariance, and hence the correlation, 
between elevation values at distances larger than h = -15000 ln(l - (4932 - 0) / 7600) 
is negative. In the čase of elevation, negative correlations at larger distances may not 
be unreasonable due to undulating topography. In other situations, negative correla
tions may be unreasonable due to the physical characteristics of the Z-process under 
study. In considering the fitted spherical model, however, we see that since that sill is 
reached at a distance h = 17,000 meters - greater than the maximum distance, 15,000 
meters, considered for modehng. As a result, there are many spherical models that 
will fit the experimental variograms well at distances less that 7,000 meters. An 
example is shown in Figuře 3 where both SphericalfO, 4932, 17000) and SphericalfO, 
8000, 28500) are plotted. The two variograms are essentially identical at distances 
less than 7,000 meters.

Fig. 3. Spherical (0, 17000, 4932) and Spherical (0, 8000, 28500) models.

The considerations above argue that there are many variogram models that will fit 
the experimental variograms equally well at distances less than 7,000 meters. Since 
the windowing process ušed in kriging will never select points this far apart, any one 
of these models will produce kriging interpolations that are essentially the same. We 
clected to use the model

y(/i) = 50 -h 7,600(1 - exp(-/i / 15,000),
for finding the kriging weights. This model has no nugget effect, a sill of 7,600 

ft^, and the effective range of 15,000*3 meters.

4.2 KRIGING THE ELEVATION DATA
The OI<B2D program in the Geostatistical Software Libarary (Deutsch and Jour- 

nel 1992) was ušed for kriging. This is a widely available libr^ and was chosen 
largely out of cost considerations. Ancillary analysis and cheeking was done using 
custom programs written in GAUSS (Aptech Systems, Inc.).

Tlxe earlier development of the kriging procedúre was presented as if the eleva
tion, Z(xo), of a single location is to be predicted. In pracúce, we are usually intere- 
sted in predicúng for a large number of locaúons. Indeed, for the creaúon of a DEM, 
we want to predict the elevaúons on a grid of locaúons. This presents no problém; we 
simply repeat the predicúon process separately for each point on the grid. The grid 
should be fine enough to capture the topographical phenomena of interest; but at the
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same time, a grid that is too fine unduly increases processing time and file sizes 
without providing additional information (due to the reuse of data).

Figuře 4 shows the distribution of the digitized data on the j:y-plane. The distribu- 
tion is generally even. The extent in the East-West direction is approximately 24,560 
meters and in the North-South direction approximately 27,740 meters. There were 
just over 800 digitized points. This indicates that each point nominally covers about 
920 by 920 meters and that the map dimensions are nominally about 27 points in the 
East-West direction by 30 points in the North-South direction. In choosing the grid 
dimensions, we should also consider the window dimensions ušed for kriging each 
grid location. Three was chosen as the minimum number of digitized points to use 
for predicúng the elevaúon at a grid locaúon. The minimum window rádius to 
capture at least three neighboring points was found to lie between 2,000 and 2,500 
meters.

Fig. 4. Spatial distribution of sample data.

In trial mns, it was observed that for all grid locaúons, regardless of the grid and 
window sizes, the weights of only three or four points within the window were 
noúceably different from zero. These were usually the digiúzed sample locaúons 
nearest the grid locaúon being predicted. Occasionally, one of the four nearest loca
úons had a smáli weight while another, slightly further away, had a larger weight. 
This situaúon typically arises when the nearer-smaller-weighted point is redundant 
with other nearby points. In no čase did using more than the eight sample (digiúzed) 
locations nearest a grid location significantly change the kriging weights. There were 
almost always eight points within the maximum window rádius of 2,500 meters. 
Indeed, with a nominal spacing of 920 by 920 meters, we could expect between 20 
and 25 sample points within a circular window of rádius 2,500 meters. Consequently, 
we selected three as the minimum and eight as the maximum number of sample 
points with which to krig. These values were achieved with a kriging window rádius 
of at most 2,5(X) meters.

Given the nominal spacing of 920 by 920 meters and the window size, it was 
decided that a grid of 50 by 50 meters was sufficiently fine for illustraúon puiposes, 
and would guarantee that most adjacent grid locaúons were kriged with overlapping, 
but different, sets of sample data. The grid of 50 by 50 implies, for the Piloncillo 
dataset, that each cell is about 490 meters by 555 meters. This may be too coarse for 
some natural resource or geophysical studies using DEM results. A detailed analysis 
was not attempted, but is unlikely that the Piloncillo data would support a kriging
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grid as fine as 100 by 100 without digitizing more sample data. Figuře 6 shows the 
results, z(G), of kriging the Piloncillo data on a 50 by 50 grid; G = {xo : xo is on the 
grid}.

Fig. 5. Histogram and norma! probability plot of the cross-validation residuals, zta) - zixi),
i = 1,2, n.

4.3 MODEL ACCURACY AND TESTING

One of the primary advantages of kriging over other interpolation methods is that 
kriging allows assessments of the goodness-of-fit of the interpolation. This is becau
se a variance can be estimated at each grid point. Cross-validation is a leave-one-out 
type of analysis that is sometimes ušed with kriging. Under this scenario, each of the 
digitized sample points is left out of the data set, one at a time, and the elevation at 
that point is predicted using the kriging equation from the remaining 805 sample 
points. Since we know the elevation at each of these points and we háve a prediction 
of the elevation at each point, we can use the differences, z(x,) - z(xi) for i=l ,2,...,806, 
to evaluate model performance. Figuře 5a shows a histogram of these differences and 
Figuře 5b a normál probability plot of the differences. Data following a normál 
distribution will fall close to the dotted line in Figuře 5b. Tbese two plots indicate 
that the residuals are approximately normally distributed. The minimum residual was 
-50 feet and the maximum was about h-50 feet: the residual mean and standard

Fig. 6. Predicted elevaúons, z(G), for grid locations G = {^co : xq on the grid).
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deviation were 0.2 feet and 13.9 feet, respectively, implying a confidence interval 
half width of about 27 feet.

Since the residuals are approximately normally distributed, we cm also compute 
confidence intervals for each point on our grid using z(xo)±1.96aíi:(z(xo)) where

(z(v())) is a sample- and variogram model-based estimate of the kriging variance 
(Appei^dix 3). Figuře 7 shows the confidence-interval-half-width surfaee: 
1.96a/r^z(G)) and Figuře 8 shows the result of adding the half width to the predic- 
tions: z{G) + \ .96ok{z{G)). Given the scaling of the graphics. Figuře 8 seems to 
indicate that the kriging variances are within acceptable limits. The range of the 
confidence interval half widths is 5 to 56 feet, with a mean half width of about 32 
feet. The widest intervals were near the boundary of the clipped region. Within the 
Piloncillo quadrangle itself, the maximum was about 48 feet. This amount of predic
tion error may seem undue, but for grid cells of 490 by 555 meters, it is reasonable. 
The magnitudes of the variances and resulting confidence intervals was also consis- 
tent with the cross-validation results.

Fig. 7. Confidence interval half-widths, l.96amZÍG)), for grid locations G = {xo : xo on the grid).

Fig. 8. Predicted plus confidence half-widths, z(G) -l- 1.96a;r (z(G)), 
for grid locations G = {xo ; xo on the grid).

5 DISCUSSION AND CONCLUSION 
Elevations on the clipped Piloncillo quadrangle were considered as random va-
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riables. As such, elevation was studied and predicted by stochastic rather than deter- 
ministic models. In fact, a particular elevation is a result of a number of endogenetic 
and exogenetic forces such as plate tectonics, stratigraphy, Chemical and physical 
weathering which are not fully understood. Hence, each elevation occurs on a parti
cular plače with certain probability. Stochastic models such as kriging appear to be 
highly suitable for modeling of many types of geo-physical and natural resource data. 
Kriging predicts the elevations with minimum mean square error of prediction and 
can také into account directionally (anisotropic) spatial dependence of the random 
variable. The digitized Piloncillo data were irregularly spaced. There is some indica- 
tion that, for irregularly spaced data, kriging performs better than deterministic algo- 
rithms (Laslett 1994). For the density of digitized sample points, our confidence 
intervals indicated acceptable predictions. Better predictions could be obtained by 
increasing the sample size.

There is no easy answer to the question of how to construct the most accurate 
digital elevation models or which approach is the most efficient (Lam 1983). Howe
ver, increased knowledge of geostatistical methods provides significant insights not 
only into our understanding of spatial distribution of elevations but also into the 
spatial modeling of any natural resource phenomena. Geographic Information Sys
tems store large quantities of spatial data and háve functions to manipulate spatial 
database. Hence, the link of spatially oriented scientific research with GIS significan
tly improves the efficiency of digital elevation modeling and enhances the power of 
spatial analysis.

Appendix 1: The Lagrange Function Expressed in Terms of 
Covariances of the Random Function

By expanding E{Z{xo) - Z{xq)) , in this Appendix we will show that the Lagrange 
function, (4), can be expressed in terms of covarianpes such as Cov(Z(x,), Z(xj)). We 
begin by adding and subtracting g = EiZ(xo)) = E{Z{xo)) and using equation (3) to 
subsitute for 2(xo). For now, ignore the expectation operátor:

(Z(xo) - Z(xo))^ = ((ž(X(i) - g) - (Z(x()) - g)) =
,2

(Al.l)

Now, expanding the square.

(((” \
2]w(),Z(x,) - (Z(X(,) - g))
l=i

vvv ) ) )

(Z(xo) - Z(X())) =
ff n

2^Wo,Z(x,) -b
1=]vv 2 y

-2
ííí n ^ \ \

^wo,Z(x,) - (Z(xo) - g))
/=I

vvv J J J

+ /i(Z(xo) - g)) (AI.2)

Since ^wo, = 1, we can wiite g = g^wo, = ^vťo,g. Substituting this into (AI.2) 
we háve
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(Z(xo) - Z{xo))
ffn ( n \

Xwo,Z(Xí) - X^O'P -
i=l

VV )
1 = 

V J /
(( n A í n A \

-2 Xmio,Z(x,) - XW0/|i (Z(xo) - p))

V
l=\

VV )
/-I

V J 7

+ E{Z{xo) - ^i)) .

In both the first and second terms on the right-hand side, we can now consolidate 
the summations. Also, since iZ(xo) - |i) in the second term does not depend on i, we 
can move it inside the summation:

í"
(Z{xo) - Z(xo))^ = 5^Wo,(Zx,) - p)

i=I

5^Wo,(Z(x,) - p)(Z(xo) - p))

í=l

+ E{Z(xo)-^)f. (AI.3)

The first term in (AI.3) expands to

'^Woi (Z(xod - P)

i=l
X “ P)(Z(X0j) - P)
1=17=1

V 

í n
X (wl (Z(xo,) - p)^ + Iwoi'^woj (Z(xoi) - p)(Z(xo;) - p)

1=1 />i

Substituting this back into (AI.3), we arrive at

{Z(xo) - Z{x„)) =X 

(=1
Woí(Z(X;) - p)^ + Iwm'^wojdZiXi) - \i{Z(Xj) - p))

J*‘

- 2X^0,((Zíx,) - p)(Z(xo) - p)) + (Z(xo) - p) . 
(=1

Finally, taking expectations

£:(Z(xo) - Z(xo))^ = X
i=l

woi E(Z{Xi) - p)^ + 2wo,Xiroj£'((Z(x,) - p(Z(Xj) - p)) 

j*‘

- 2'^woiE({Z{xi) - p)(Z(xo) - p)) + £(Z(xo) - p)^

i=l

(AI .4)
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But E((Z(Xi) - [i)(Z{Xj) -1^)) is the definition of the covariance, Oy, between Z(x/) 

and Z(xj), and E{(Z{xi) - \i)(Z(xo) - n)) = o,o is the covariance between Z(x,) and Z(xo). 
Also, E{Z{xo) - n) = ao is the vanance at location xo. In order to maintain a 
consistent notation, lets write this as a covariance;
^(Zixo) - |a)^ = ^(Zixo) - |i)(Z(xo) - n) = Ooo . Similarly, E(Z(x,) - uf = a} = a,/ for i = 
1, 2, ..., n. The variance is assumed to be the same at all locations in the domain, so
we will also use the notation o = Oo = o,, / = 1, 2,n.

Substituting these covariance expressions into (AI .4)
ní n \ n

E(Z(xn) - Z(xo)f = ^ woiOý + 2woff wojQjj — 2^wo,cyoi + Ooo ■

Í=1 j*i i=\

So that the Lagrangian function is: 

L(woi,2.:i = 1,2,= £'(Z(xo)-Z(xo))

n ( " ^ n ( n
1 Wo,o„ + 2woiYj^OjGij — 2'^woíGo: + Goo + 2X “ i
i=i j*í\

i=l /=1
/

Appendix 2: Kriging Equations Expressed in Terms of Variogram
Values

The defmitions of the covariance, variogram, and variance of the Z(x)’s allow us 
to write:

Oy = E(Z{xi) - M-)(Z(xy) - p) = £(Z(x,) Z{xj)) - (A2.1)
2yy = E{Z{xi) - Z{xjf = 2£(Z(x/) Z(x,)) - 2£(Z(x,) Z(x;)) (A2.2)

= C(0) = Gii = E{Z{xi - p)(Z(x/) - p) = E{Z{xi)Z{xi)) - p^ ' (A2.3)

From (A2.3), E(Z(xí)Z(xí)) = + [f. Substitute this into (A2.2) to obtain:
Yy = + p^ - E{Z{Xi)Z{xj)). But from (A2.1), E(Z(Xi)Z{Xj)) = Oy + p^. So

2 2 2 2 Yy = O + p - 0,7 - p = o - Gij,

or: Gij = G^ - Yy- Substituting each of these into the matrix C, we see that
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Similarly,

C =

Oll Ol2

O21 CT22

1 ^n2 • • • ^I

^\n 
Olfí

a^-Yii -jn ■■■
2 2 o - Y21 a - Y22

2 2
a -Y«i o -y„2

- y2„

- y„,

= o

"11 ... r Yii Yi2 ... Yi-

11 ... 1 Y21 Y22 ■ ■■yin

11 ... 1 Y«i Y-2 ... Y™

= J - r

p ^ r^2 „ ■ P -.

Ooi 0 - Yoi T' Yoi
002 - Y02 1 Yo2

Co = = = a2 -

Oo„ 0^ - Yo« 1 Yo«

= Y-

Substituting these expressions into the kriging equations, Cw = čo

Cj
i^o

o' J-rj
•J

j - Y

This allows us to write:

To^j 0] j r jT W -K J] [i o"' oJ Lfo| ■[0 J-[
»1 w r
OJ ■JL J oJL
0^ J w] > j^r

0 J
.T í

LJ ojL

w
-X

w
-X

Ta' j! ^1 ^1- 
'J L 0 J

K'
L o .
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But each row of Jw evaluates to ^wo, = 1. Therefore, Jw = j and
í=i

''’hjľr ji w pjl Yi oj J/oJ -X 0 1

This allows us to write the kriging equations in matrix form as rw = y where
. Trii 
r = l I: 

LJ OJ
w
-X and y = (A2.4)

The similarity with the originál, covariance-based, formulation of the kriging 
equations is obvious.

Appendix 3: The Kriging Variance
The kriging (or prediction) variance is simply the mean squared prediction error 

that was minimized in order to determine the kriging weights. That is,

al(Z{xo)) = E(Z{xo) - Z(xo))^ .

There are a number of different ways that the kriging variance can be expressed 
and estimated. We showed in Appendix 1 that it can be expressed as

o^(Z(xo)) = II (woi Woj Cij) - 2^vťo/ Ooí + Ooíí ■ 
i=\j=\ i=\

Remembering that, if it exists, Ooo = o is the variance of the Z-process:

(A3.1)

o = E(Z(xo) - p) , we can re-write this in matrix form as:

aliZ(xo)) = wj Cwo - 2wo Co -i-

Another expression can be found by noting, from the covariance-based formula
tion of the kriging equations (equations (5) and the matrix formulation immediately 
following), that Cwo -t = Co. This allows us to write

o^(Z(xo)) = wl (Co - jk) - 2wÍL Co -i- - (WiTco + k).

Here we ušed the fact that wíT j = 1. Now noting that

Cčo= [wo X]^ = wó Co + X, we háve that

Ox(Z(xo)) — — Wo co (A3.2)

Equations (A3.1) and (A3.2) are equivalent ways to express the variance when 
working with the covariogram formulation of kriging. In Appendix 2 we showed that
C = o^J - r and that co = o^j - yo. If we substitute these terms into (A3.1) and (A3.2) 
we obtain expressions that are useful when working the variogram formulation of
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kriging. In particular, 

G^{Z(Xo)) ■ ■ y/o Cwo ■ 2v/o Co = =

and

^ Wo (a^ J - n Wo - 2wl (o^ j - Yo) + = (A3.3)

: 2wo Yo • y/o r Wo,

Ok(Z(xo)) — — w o Co —

= - (w^Co + X) =
= - w^ (o^ j - Yo) - ^ = (A3.4)
= w^Yo •

= [Wo )t] T = y/o yo

Because it can be confusing when comparing the variance formulations used by 
various authors, expecially when one is first trying to understand kriging, we specifi- 
cally note that the sign on the Lagrange multiplier, in our čase X, depends on how the 
Lagrangian function is specified for the development of the kriging equations. We 
added the term 2XC£jWqí - 1). Some authors subtract this term. Whether the term is
added or subtracted is inconsequential in the sense that the quantity within the paren
theses is zero. Nor does it really matter whether X is multiplied by 2. However, X 
itself is estimated as part of the kriging procedúre and shows up in the variance 
equations. An advantage of using the (A3.2) or (A3.4) expressions of the kriging 
variance, is that the sign of the Lagrange multiplier is automatically accounted for. 
Also, in Appendix 2 we saw that the Lagrange multiplier for the variogram and the 
covariogram formulations of the kriging procedúre háve opposite sign.

Finally, we should note that, as expressed, equations (A3.1) - (A3.4) are popula- 
tion variances. In order to use these equations, sample- and model-based estimates 
mušt be substituted for the population values. For example, to use (A3.1), we eslima-

te the population variance, with ihe sample-based = 2^ (z/ - z) ^ ! (n-1), and
i=\

we use the kriging equations to estimate the weights (elements of wo). Knowing the 
distances between the jc,’s, and between xo and each of the x's, elements of
r and Yo are estimated from the variogram model. Similarly, if we háve a distance-ba- 
sed model of covariance, elements of C and co can be estimated from that model.
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Peter Šiška, Marian Eriksson, Robert Maggio

TVORBA DIGITÁLNEHO MODELU RELIÉFU POMOCOU KRIGINGOVEJ
INTERPOLAČNEJ METODY

Digitálne výškové modely sií aproximáciou trojrozmerného zemského povrchu, leh presnosť je 
sčasti ovplyvnená disekciou reliéfu. Rovinné geomorfologické útvary sú relatívne presnejšie 
interprelovateľné digitálnymi výškovými modelmi. Na druhej strane značne členité časti zemského 
povrchu, ako napríklad vysokohorské štniktúry, zlomové línie, erózne brázdy, kaňony, členité 
vrásové štruktúry, atď., sú príčinou nepresnosti pri vytváraní digitálnych terénnych modelov. 
Predložená práca podrobne vysvetľuje a zároveň aj uplatňuje princípy krigingovej (optimálnej) 
interpolačnej metódy pri konštrukcii digitálneho výškového modelu rovinného typu. Kriging je 
stochastickou metódou a vyznačuje sa minimálnou strednou kvadratickou chybou predikcie.

Zákonitosti v prírodnej sfére, vrátane procesov, ktoré sa dotýkajú dynamiky zemskej kôry, sa 
často nemôžu plne opísať a vyjadriť deterministickými modelmi. Predložená práca dôkladne 
analyzuje priestorovú interpolačnú metódu, ktorá je podobná skupine tzv. BLUE estimátorov v 
lineárnej regresii. Kriging má dobré predpoklady kvantitatívne vyjadriť zákonitosti priestorového 
rozloženia geografických javov v prírodnej sfére a zároveň poukazuje na možnosti využitia 
digitálnych modelov v rámci geografických informačných systémov, ktoré podporujú výskumné 
úlohy praktického zamerania.

Obr. 1 Štyri pozitívne definitné modely rozptylogramov (variogramov). Všetky modely majú 
zhodne chybu merania 20 jednotiek. Sférický, exponenciálny a gaussov model majú rozsah 35 a 
asymptotu 100. Tri mocninové modely, ktoré zodpovedajú exponentom a = 0,5, a = 1, a a = 2 sú 
zobrazené na paneli c.

Obr. 2. Experimentálne a fitované rozptylogramy. Grafické symboly pre multismerový a 
jednotlivé smerové experimentálne rozptylogramy (východ-západ a sever-juh) sú vyjadrené v 
podobe kruhov, štvorcov a trojuholníkov v uvedenom poradí. Plné čiary reprezentujú sférický



113

model, bodkovaná čiara reprezentuje exponenciálny model a prerušovaná čiara aproximovaný 
mocninový model.

Obr. 3. Sférické modely (0, 17000, 4932 a 0, 8000, 28500).

Obr. 4. Priestorové rozloženie vzoriek.

Obr. 5. Histogram a normálna pravdepodobnostná sieť rezíduí z(x;) -z(x,), i = 1,2, ..., n.

Obr. 6. Modelom predpovedané výškové hodnoty z(G) pre polohy buniek G = {xo:xo leží na 
bunkovej sieti}.

Obr. 7. Polovičná šírka intervalu spoľahlivosb \ .9()Ok (z(G)) pre polohy buniek G = {xo:xo leží 
na bunkovej sieti).

Obr. 8. Hodnoty predpovedané modelom a polovičná šírka ich intervalu spoľahlivosti 
z(G) + 1.96a*: (z(G)) pre polohy buniek G = {xo:xo leží na bunkovej sieti).

Translated by Peter Šiška


